ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ НЕЙРОПЛАСТИЧНОСТИ КАК ОСНОВА ПСИХИЧЕСКИХ ПРОЦЕССОВ И СОЦИАЛЬНО-ПРОФЕССИОНАЛЬНОЙ АДАПТАЦИИ (ЧАСТЬ 1)

  • К. И. Павлов Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова (197045, Российская Федерация, Санкт-Петербург, Ушаковская набережная, 17/1) Pavlov@ya.ru
  • В. Н. Мухин Институт экспериментальной медицины (197376, Российская Федерация, Санкт-Петербург, ул. Академика Павлова, 12) https://orcid.org/0000-0003-0999-6847 Valery.Mukhin@gmail.com
Ключевые слова: нейропластичность, нейрогенез, синаптическая пластичность, долговременная потенциация, когнитивные функции, социально-профессиональная адаптация

Аннотация

Аннотация. Целью работы является обзор современных исследований, посвященных изучению физиологических механизмов нейропластичности, рассматриваемой в качестве основы психических процессов и социально-профессиональной адаптации.
Содержание. Анализ литературных источников позволил определить феномен нейропластичности как способность организма адаптироваться к условиям внутренней и внешней среды путем оптимальной структурно-функциональной перестройки нервной ткани головного мозга, имеющей в своей основе сложный комплекс событий, связанных с нейрогенезом и апоптозом, синаптической пластичностью, изменением электровозбудимости нервных клеток и экспрессией генов, а также нейрон-глиальными взаимодействиями. В первой части работы рассматриваются результаты исследований, демонстрирующих влияние на нейропластичность молекулярно-генетических факторов, при воздействии которых происходят изменения структурно-функциональной сложности нейронных сетей, определяющих: эффективность интегративных функций мозга, социальную и профессиональную адаптацию, устойчивость к развитию патологических состояний. Анализ результатов исследований позволил сделать заключение о том, что предметная и информационная насыщенность окружающей среды, социальное окружение и характер отношений между членами социальной группы, когнитивная и физическая активность, обучение новым формам поведения и приобретение профессиональных знаний также могут оказывать значительное влияние на физиологические механизмы нейропластичности, тем самым увеличивая эффективность адаптации.

Скачивания

Данные скачивания пока не доступны.

Информация об авторах

К. И. Павлов , Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова (197045, Российская Федерация, Санкт-Петербург, Ушаковская набережная, 17/1)

Кандидат психологических наук, старший научный сотрудник научно-исследовательского отдела (профессионального психологического обеспечения), Военный учебно-научный центр Военно-Морского Флота

В. Н. Мухин , Институт экспериментальной медицины (197376, Российская Федерация, Санкт-Петербург, ул. Академика Павлова, 12)

Кандидат медицинских наук, старший научный сотрудник, Физиологический отдел им. И.П. Павлова

Литература

1. James W. The Principles of Psychology / Henry Holt and Company, New York. 1890. P. 104–127. https://openlibrary.org/works/ OL1502064W/The_principles_of_psychology
2. Bethe Altes und Neues über die Plastizität des Nervensystems // Archiv f. Psychiatrie. 1926. Vol. 76. P. 81–83. DOI: 10.1007/BF01814685
3. Konorski J. Conditioned reflexes and neuron organization // Facsim. reprint of the 1948. Cambridge biological studies series, Cambridge University Press. 1968. 89 p. https://archive.org/details/in.ernet.dli.2015.190856
4. Гусев Е.И., Камчатнов П.Р. Пластичность нервной системы // Журнал неврологии и психиатрии им. С.С. Корсакова. 2004. Т. 100, № 3. С. 73–79. https://www.elibrary.ru/ author_items.asp?authorid=91278
5. Гомазков О.А. Нейрогенез как адаптивная функция взрослого мозга // Успехи современной биологии. 2013. Т. 133, № 4. С. 349–366. https://www.elibrary.ru/item.asp?id=20174471
6. Проблемы нейропластичности и нейропротекции / В.А. Цинзерлинг, А.Д. Сапаргалиева, Ю.И. Вайншенкер, С.В. Медведев // Вестник СПбГУ. 2013. Т. 4. С. 3–12. https://www.elibrary.ru/item.asp?id=20912211
7. Современное состояние проблемы нейропластичности в психиатрии и неврологии / И.В. Галанин, А.Г. Нарышкин, А.Л. Горелик [и др.] // Вестник Cеверо-Западного государственного медицинского университета им. И.И. Мечникова. 2015. Т. 7, № 1. С. 134–143. https:// www.elibrary.ru/item.asp?id=24307750
8. Гуляева Н.В. Фундаментальные и трансляционные аспекты стресс-реактивности вентрального гиппокампа: функционально-биохимические механизмы измененной нейропластичности // Нейрохимия. 2015. Т. 32, № 2. С. 101–111. https:// www.elibrary.ru/ item.asp?id=23302899
9. Пальцын А.А., Свиридкина Н.Б. Пластичность мозга // Патогенез. 2020. Т. 18. № 3. С. 68–76. DOI: 10.25557/2310-0435.2020.03.68-76
10. Ismail F.Y., Fatemi A., Johnston M.V. Cerebral plasticity: Windows of opportunity in the developing brain // Eur. J. Paediatr Neurol. 2017. Т. 21, № 1. С. 23–48. DOI: 10.1016/j.ejpn.2016.07.007.
11. Bernhardi R., Bernhardi L., Eugenín J. What Is Neural Plasticity? // Adv. Exp. Med. Biol. 2017. Vol. 1015. P. 1000–1015. DOI: 10.1007/978-3-319-62817-2_1.
12. Sasmita A.O., Kuruvilla J., Kiong Ling A.P. Harnessing neuroplasticity: modern approaches and clinical future // Int. J. Neurosci. 2018. Vol. 28 (11). P. 1061–1077. DOI: 10.1080/00207454.2018.1466781
13. Изнак А.Ф. Нейрональная пластичность как один из аспектов патогенеза и терапии аффективных расстройств // Психиатрия и психофармакотерапия. 2005. Т. 7, № 1. С. 24–27. https://www.elibrary.ru/ item.asp?id=20343304
14. Гусев Е.И., Боголепова А.Н. Роль процессов нейропластичности в развитии депрессивных расстройств // Трудный пациент. 2010. Т. 8, № 10. С. 11–16. https:// www.elibrary.ru/item.asp?id=16910849
15. Изменения структурно-функциональной пластичности головного мозга, индуцированные обогащенной средой // Ю.К. Комлева, А.Б. Салмина, С.В. Прокопенко [и др.] // Вестник РАМН. 2013. Т. 68, № 6. С. 39–48. https://www.elibrary.ru/ item.asp?id=19139669
16. Гуляева Н.В. Молекулярные механизмы нейропластичности: расширяющаяся вселенная // Биохимия. 2017. Т. 82, № 3. С. 365–371. https://www.elibrary.ru/item.asp?id=29008499
17. Kempermann G., Kuhn H.G., Gage F.H. More hippocampal neurons in adult mice living in an enriched environment // Nature. 1997. Vol. 386 (6624). P. 493–495. DOI: 10.1038/386493a0.
18. Effects of environmental enrichment on gene expression in the brain / C. Rampon, C.H. Jiang, H. Dong et al. // Proc. Natl. Acad. Sci. USA. 2000. Vol. 97. P. 12880–12884. DOI: 10.1073/pnas.97.23.12880.
19. Shors T.J., Miesegaes G., Beylin A. Neurogenesis in the adult is involved in the formation of trace memories // Nature. 2001. Vol. 410. P. 372–376. DOI: 10.1038/35066584.
20. Environmental enrichment mitigates cognitive deficits in a mouse model of Alz-heimers disease / J.L. Jankowsky, Т. Melnikova, D.J. Fadale et al. // J. Neurosci. 2005. Vol. 25. P. 5217–5224. DOI: 10.1523/ JNEUROSCI.5080-04.2005.
21. Костенко Е.В. Нейропластичность – основа современной концепции нейрореабилитации // Медицинский алфавит. 2016. Т. 2, № 14(277). С. 5–11. https://www.elibrary.ru/ item.asp?id=26727232
22. Гомазков О.А. Новые клетки взрослого мозга и регуляция социального поведения // Успехи современной биологии. 2018. Т. 138, № 1. С. 57–67. DOI: 10.7868/S0042132418010052
23. Snyder J.S., Cameron H.A. Could adult hippocampal neurogenesis be relevant for human behavior? // Behav. Brain Res. 2012. Vol. 227(2). P. 384–390. DOI: 10.1016/j.bbr.2011.06.024.
24. Snyder J.S., Soumier A., Brewer M. Adult hippocampal neurogenesis buffers stress responses and depressive behavior // Nature. 2011. Vol. 476 (7361). P. 458–461. DOI: 10.1038/nature10287.
25. Lieberwirth C., Wang Z. The social environment and neurogenesis in the adult mammalian brain // Front Hum. Neurosci. 2012. Vol. 6. P. 118. DOI: 10.3389/fnhum.2012.00118
26. Occupational Neuroplasticity in the Human Brain: A Critical Review and Meta-Analysis of Neuroimaging Studies / H. Wu, H. Yan, Y. Yang, et al. // Front Hum. Neurosci. 2020. Vol. 14. P. 215. DOI: 10.3389/fnhum.2020.00215.
27. Altman J. Are new neurons formed in the brains of adult mammals? // Science. 1962. Vol. 135. P. 1127–1128. DOI: 10.1126/science.135.3509.1127
28. Milestones of neuronal development in the adult hippocampus / G. Kempermann, S. Jessberger, B. Steiner et al. // Trends in Neurosci. 2004. Vol. 27 (8). P. 447–452. DOI: 10.1016/j.tins.2004.05.013.
29. Aimone J.B., Wiles J., Gage F.H. Potential Role for Adult Neurogenesis in the Encoding of Time in New Memories // Nature Neuroscience. 2006. Vol. 9. P. 723–727. DOI: 10.1038/nn1707.
30. Özen I., Boix J., Paul G. Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? // Clin. and Translat. Medic. 2012. Vol. 1. P. 30. DOI: 10.1186/2001-1326-1-30.
31. Lledo P.M., Alonso M., Grubb M.S. Adult neurogenesis and functional plasticity in neuronal circuits // Nat. Rev. Neurosci. 2006. Vol. 7 (3). P. 179–193. DOI: 10.1038/nrn1867.
32. Carleton A., Petreanu L.T., Lansford R. Becoming a new neuron in the adult olfactory bulb // Nature. Neuroscience. 2003. Vol. 6 (5). P. 507–518. DOI: 10.1038/nn1048.
33. Neurogenesis in the adult brain / M. Mackowiak, A. Chocyk, K. Markowicz-Kula et al. // Pol. J. Pharmacol. 2004. Vol. 56(1). P. 673–687. https://pubmed.ncbi.nlm.nih.gov/15662080/
34. Abrous D.N., Koehl M., Le Moal M. Adult neurogenesis: From precursors to net-work and physiology // Physiol. Rev. 2005. Vol. 85(8). P. 523–569. DOI: 10.1152/physrev.00055.2003.
35. Seaberg R.M., van der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions // Trends Neurosci. 2003. Vol. 26(3). P. 125–131. DOI: 10.1016/S0166-2236(03)00031-6.
36. Тукаев Р.Д. Феномен нейрогенеза взрослого мозга в экспериментальных и клинических исследованиях; аспекты этиопатогенеза психических расстройств, психофармакотерапии и психотерапии // Социальная и клиническая психиатрия. 2008. Т. 18, № 2. С. 96–102. https:// www.elibrary.ru/item.asp?id=19016051
37. Мальцев Д.И., Подгорный О.В. Молекулярно-клеточные механизмы регуляции состояния покоя и деления стволовых клеток гиппокампа // Нейрохимия. 2020. Т. 37, № 4. С. 291–310. https://www.elibrary.ru/ item.asp?id=44038633
38. Cameron H.A., McKay R.D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus // J. Comp Neurol. 2001. Vol. 435. P. 406–417. DOI: 10.1002/cne.1040.
39. Бехтерева Н.П. Здоровый и больной мозг. Л.: Наука. 1988. 208 с. https:// www.elibrary.ru/item.asp?id=35045195
40. Aimone J.B., Wiles J., Gage F.H. Computational Influence of Adult Neurogene-sis on Memory Encoding // Neuron. 2009. Vol. 61. P. 187–202. DOI: 10.1016/j.neuron.2008.11.026.
41. Cameron H.A., Glover L.R. Adult neurogenesis: beyond learning and memory // Annu. Rev. Psychol. 2015. Vol. 66. P. 53–81. DOI: 10.1146/annurev-psych-010814-015006.
42. Mukhin V.N., Pavlov K.I., Klimenko V.M. The Integrative Level of the Hierarchical Spatial Orientation System in Animals // Neurosci. and Behav. Physiology. 2017. Vol. 47 (6). P. 675–680. https:// pubmed.ncbi.nlm.nih.gov/30188673/
43. Okuyama T. Social memory engram in the hippocampus // Neurosci. Res. 2018. Vol. 129. P. 17–23. DOI: 10.1016/j.neures.2017.05.007.
44. Montagrin A., Saiote C., Schiller D. The social hippocampus // Hippocampus. 2018. Vol. 28 (9). P. 672–679. DOI: 10.1002/hipo.22797.
45. Kam M., Curtis M.A. The cellular composition and morphological organization of the rostral migratory stream in the adult human brain // J. Chem. Neuroanat. 2008. Vol. 37. P. 196–205. DOI: 10.1016/j.jchemneu.2008.12.009.
46. Мезенхимальные стволовые клетки в процессах роста и репарации тканей / Н.И. Калинина, В.Ю. Сысоева, К.А. Рубина [и др.] // Acta Naturae. 2011. Т. 3, № 4. С. 32–39. https://www.elibrary.ru/item.asp?id=17704758
47. Kuhn H.G., Dickinson-Anson H., Gage F.H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation // J. Neurosci. 1996. Vol. 16 (6). P. 2027–2033. DOI: 10.1523/ JNEUROSCI.16-06-02027.1996.
48. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus / V. Pencea, K.D. Bingaman, S.J. Wiegand et al. // J. Neurosci. 2001. Vol. 21. P. 6706–6717. DOI: 10.1523/JNEUROSCI.21-17-06706.2001.
49. Gascon E., Vutskits L., Zhang H. Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zonederived neuronal progenitors in vitro // Eur. J. Neurosci. 2005. Vol. 21. P. 69–80. DOI: 10.1111/j.1460-9568.2004.03849.x.
50. Tropepe V., Craig C.G., Morshead C.M., Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma // J. Neurosci. 1997. Vol. 17. P. 7850–7859. DOI: 10.1523/JNEUROSCI.17-20-07850.1997.
51. A pivotal role of GSK-3 in synaptic plasticity / C.A. Brabley, S. Peineau, C. Taghibiglou et al. // Frontiers in Molecular Neuroscience. 2012. Vol. 5. P. 16–26. DOI: 10.3389/fnmol.2012.00013.
52. Role of GSK3 signaling in neuronal morphogenesis / T.Y. Kim, E.M. Hur, W.D. Snider, F.Q. Zhou // Frontiers in Molecular Neuroscience. 2011. Vol. 4. P. 31–39. DOI: 10.3389/fnmol.2011.00048.
53. Cameron H.A., McEwen B.S., Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus // J. Neurosci. 1995. Vol. 15 (6). P. 4687–4692. DOI: 10.1523/JNEUROSCI.15-06-04687.1995.
54. Brezun J.M., Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats // J. Neurosci. 1999. Vol. 89 (4). P. 999–1002. DOI: 10.1016/s0306-4522(98)00693-9.
55. Kulkarni V.A., Jha S., Vaidya V.A. De-pletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus // Eur. J. Neurosci. 2002. Vol. 16 (10). P. 2008–2012. DOI: 10.1046/j.1460-9568.2002.02268.x.
56. Hoglinger G.U., Rizk P., Muriel M.P. Dopamine depletion impairs precursor cell proliferation in Parkinsons disease // Nat. Neurosci. 2004. Vol. 7 (7). P. 726–735. DOI: 10.1038/nn1265.
57. Cameron H.A., Gould E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus // Neurosci. 1994. Vol. 61 (1-2). P. 203–209. DOI: 10.1016/0306-4522(94)90224-0.
58. Tanapat P., Hastings N.B., Reeves A.J. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat // J. Neurosci. 1999. Vol. 19 (14). P. 5792–5801. DOI: 10.1523/JNEUROSCI.19-14-05792.1999.
59. Bergami M., Massserdotti G. A critical period for experience-dependent remodeling of adultborn neuron connectivity // Neuron. 2015. Vol. 85 (4). P. 710–717. DOI: 10.1016/ j.neuron.2015.01.001.
60. Cassilhas R.C., Tufik S., Túlio de Mello M. Physical exercise, neuroplasticity, spatial learning and memory // Cell. Mol. Life Sci. 2016. Vol. 73 (5). P. 975–983. DOI: 10.1007/s00018-015-2102-0.
61. Gould E., Beylin A., Tanapat P. Learn-ing enhances adult neurogenesis in the hippocampal formation // Nat. Neurosci. 1999. Vol. 2 (3). P. 260–265. DOI: 10.1038/6365.
62. Clelland C.D., Choi M., Romberg C. A functional role for adult hippocampal neurogenesis in spatial pattern separation // Sci. 2009. Vol. 325. P. 210–213. DOI: 10.1126/science.1173215.
63. Kitamura T., Inokuchi K. Role of adult neurogenesis in hippocampal-cortical memory consolidation // Mol. Brain. 2014. Vol. 7. P. 13. DOI: 10.1186/1756-6606-7-13.
64. Wang W., Lu S., Li T. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function // J. Neurosci. 2015. Vol. 35 (20). P. 7833–7849. DOI: 10.1523/ JNEUROSCI.3745-14.2015.
65. Meng F.T., Zhao J., Ni R.J. Beneficial effects of enriched environment on behaviors were correlated with decreased estrogen and increased BDNF in the hippocampus of male mice // Neuro. Endocrinol. Lett. 2015. Vol. 36 (5). P. 490–497. https://pubmed.ncbi.nlm.nih.gov/ 26707050/
66. Kempermann G., Kuhn H.G., Gage F.H. Experience-induced neurogenesis in the senescent dentate gyrus // J. Neurosci. 1998. Vol. 18. P. 3206–3212. DOI: 10.1523/JNEUROSCI.18-09-03206.1998.
67. Wu M.V., Shamy J.L., Bedi G. Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus // Neuropsychopharm. 2014. Vol. 39 (8). P. 1861–1871. DOI: 10.1038/npp.2014.33.
68. Fiore M., Amendola T., Triaca V. Agonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: possible implication for brain progenitor cells activation // Eur. J. Neurosci. 2003. Vol. 17 (7). P. 1455–1464. DOI: 10.1046/j.1460-9568.2003.02573.x.
69. Watanabe N., Yamamoto M. Neural mechanisms of social dominance // Front Neu-rosci. 2015. Vol. 9. P. 154. DOI: 10.3389/fnins.2015.00154.
70. Bakermans-Kranenburg M.J., van IJzendoorn M.H., Pijlman F.T. Experimental evidence for differential susceptibility: dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on tod-dlers externalizing behavior in a randomized controlled trial // Dev. Psychol. 2008. Vol. 44 (1). P. 293–300. DOI: 10.1037/0012-1649.44.1.293.
71. Zaletel I., Filipović D., Puškaš N. Hippocampal BDNF in physiological condi-tions and social isolation // Rev. Neurosci. 2017. Vol. 28 (6). P. 675–692. DOI: 10.1515/revneuro-2016-0072.
72. Biggio F., Mostallino M.C., Talani G. Social enrichment reverses the isolation-induced deficits of neuronal plasticity in the hippocampus of male rats // Neuropharm. 2019. Vol. 151. P. 45–54. DOI: 10.1016/j.neuropharm.2019.03.030.
73. Smagin D.A., Park J.H., Michurina T.V. Altered hippocampal neurogenesis and amygdalar neuronal activity in adult mice with repeated experience of aggression // Front. Neurosci. 2015. Vol. 9. P. 443. DOI: 10.3389/fnins.2015.00443.
74. The effect of environmental harshness on neurogenesis: a largescale comparison / L.V. Chancellor, T.C. Roth, L.D. LaDage, V.V. Pravo¬sudov // Dev. Neurobiol. 2011. Vol. 71 (3). P. 246–252. DOI: 10.1002/dneu.20847.
75. Mortimer J.A., Snowdon D.A., Markesbery W. Head circumference, education and risk of dementia: findings from the nun study // J. Clin. Exp. Neuropsychol. 2003. Vol. 25. P. 671–679. DOI: 10.1076/jcen.25.5.671.14584.
76. Education mediates microstructural changes in bilateral hippocampus / F. Piras, A. Cherubini, C. Caltagirone, G. Spalletta // Hum. Brain Mapp. 2011. Vol. 32 (2). P. 282–289. DOI: 10.1002/hbm.21018.
77. Income is associated with hippocam-pal/amygdala and education with cingulate cortex grey matter volume / M. Lotze, M. Domin, C.O. Schmidt et al. // Sci. Rep. 2020. Vol. 10 (1). № art. 18786. DOI: 10.1038/s41598-020-75809-9.
78. Association of premorbid intellectual function with cerebral metabolism in Alzhei-mers disease: Implications for the cognitive reserve hypothesis / G. Alexander, M. Furey, C. Grady et al. // Am J Psychiatry. 1997. Vol. 154. P. 165–172. DOI: 10.1176/ajp.154.2.165.
79. Pavlov K.I., Mukhin V.N., Klimenko V.M. Telomere-telomerase system in aging, norm and pathology // Adv. Gerontol. 2017. Vol. 30 (1). P. 17–26. https://pubmed.ncbi.nlm.nih.gov/ 28557385/
80. Maguire E.A., Woollett K., Spiers H.J. London taxi drivers and bus drivers: a struc-tural MRI and neuropsychological analysis // Hippocampus. 2006. Vol. 16 (12). P. 1091–1101. DOI: 10.1002/hipo.20233.
81. Malenka R.C., Nicoll R.A. Long-term potentiation – a decade of progress? // Sci. 1999. Vol. 285. P. 1870–1874. DOI: 10.1126/ science.285.5435.1870.
82. Долгачева Л.П., Тулеуханов С.Т., Зинченко В.П. Участие Са2+- проницаемых AMPA-рецепторов в синаптической пластичности // Биологические мембраны. 2020. Т. 37, № 3. С. 175–187. https://www.elibrary.ru/ item.asp?id=39266908
83. Цветков Е.А., Судеревская Е.И., Веселкин Н.П. Роль долговременной потенциации в механизме условнорефлекторного обучения // Журнал эволюционной биохимии и физиологии. 2011. Т. 47, № 3. С. 185–192. https://www.elibrary.ru/item.asp?id=16398049
84. Шнитко С.Н., Стринкевич А.Л. Механизмы нервной памяти. Сообщение 3. Механизмы долговременной памяти // Военная медицина. 2008. Т. 2, № 7. С. 83–86. https://www.elibrary.ru/item.asp?id=21226874
85. Кудряшова И.В. Анализ условий, не-обходимых для начала процесса консолидации на модели долговременной синаптической потенциации // Нейрохимия. 2013. Т. 30, № 3. С. 207–215. https://www.elibrary.ru/ item.asp?id=19569600
86. Leslie J.H., Nedivi E. Activity-regulated genes as mediators of neural circuit plasticity // Prog. Neurobiol. 2011. Vol. 94(3). P. 223–237. DOI: 10.1016/j.pneurobio.2011.05.002.
87. Mayer M.L., Westbrook G.L., Guthrie P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons // Nature. 1984. Vol. 309. P. 261–263. DOI: 10.1038/309261a0.
88. Coexpressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function / K. Khodosevich, E. Jacobi, P. Far-row et al. // Neuron. 2014. Vol. 83. P. 601–615. DOI: 10.1016/j.neuron.2014.07.004.
89. Auxiliary subunit GSG1L acts to suppress calcium-permeable AMPA receptor function / T.P. McGee, C. Bats, M. Farrant, S.G. Cull-Candy // J. Neurosci. 2015. Vol. 35 (49). P. 16171–16179. DOI: 10.1523/JNEUROSCI.2152-15.2015.
90. Engelhardt J. AMPA Receptor Auxiliary Proteins of the CKAMP Family // Int. J. Mol. Sci. 2019. Vol. 20 (6). P. 1460. DOI: 10.3390/ijms20061460.
91. Henley J.M., Wilkinson K.A. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging // Dialogues Clin. Neurosci. 2013. Vol. 15 (1). P. 11–27. DOI: 10.31887/ DCNS.2013.15.1/jhenley.
92. Henley J.M., Wilkinson K.A. Synaptic AMPA receptor composition in development, plasticity and disease // Nat. Rev. Neurosci. 2016. Vol. 17. P. 337–350. DOI: 10.1038/nrn.2016.37.
93. The implication of AMPA receptor in synaptic plasticity impairment and intellectual disability in fragile X syndrome / G.R. Cheng, X.Y. Li, Y.D. Xiang et al. // Physiol. Res. 2017. Vol. 66 (5). P. 715–727. DOI: 10.33549/ phys-iolres.933473.
94. Alberini C.M., Kandel E.R. The regulation of transcription in memory consolidation // Cold Spring Harb. Perspect. Biol. 2014. Vol. 7 (1) P. 345–364. DOI: 10.1101/cshperspect.a021741.

References

1. James W. The Principles of Psychology, Henry Holt and Company, New York. 1890; 104–127. https://openlibrary.org/works/OL1502064W/The_principles_of_psychology
2. Bethe Altes und Neues über die Plastizität des Nervensystems. Archiv f. Psychiatrie. 1926; 76: 81–83. DOI: 10.1007/BF01814685
3. Konorski J. Conditioned reflexes and neuron organization. Facsim. reprint of the 1948. Cambridge biological studies series, Cambridge University Press. 1968: 89. https://archive.org/details/in.ernet.dli.2015.190856.
4. Gusev E.I., Kamchatnov P.R. The plasticity of the nervous system. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = Journal. neur. and psychiatrist. S.S. Korsakov. 2004; 100 (3): 73–79. (in Russ.) https://www.elibrary.ru/author_items.asp?authorid=91278
5. Gomazkov O.A. Neurogenesis as an adaptive function of brain. Uspekhi sovremennoi biologii = Adv. modern biol. 2013; 133 (4): 349–366. (in Russ.) https://www.elibrary.ru/item.asp?id=20174471
6. Zinserling V.A., Sapargaliyeva A.D., Vaynshenker Yu.I., Medvedev S.V. Problems of neuroplasticity and neuroprotection. Vestnik SPBGU = Bulletin of St. Petersburg State University. 2013; 4: 3–12. (In Russ.) https://www.elibrary.ru/item.asp?id=20912211
7. Galanin I.V., Naryshkin A.G., Gorelik A.L., Tabulina S.D., Michailov V.A., Skoromets T.A., Lobzin S.V. The present state of neuroplasticity in psychiatry and neurology. Vestnik Cevero-Zapadnogo gosudarstvennogo meditsinskogo universiteta im. I.I. Mechnikova = Bulletin of the North-Western State med. un. I.I. Mechnikov. 2015; 7 (1): 134–143. (in Russ.). https://www.elibrary.ru/ item.asp?id=24307750
8. Gulyaeva N.V. Fundamental and translational aspects of the stress-reactivity in the ventral hippocampus: functional and biochemical mechanisms of altered neuroplasticity. Neirokhimiya = Neurochem. 2015; 32 (2): 101–111. (in Russ.). https://www.elibrary.ru/item.asp?id=23302899
9. Paltsyn A.A., Sviridkina N.B. Brain plasticity. Patogenez = Pathogenesis. 2020; 18 (3): 68–76. (in Russ.). DOI: https://doi.org/10.25557/2310-0435.2020.03.68-76
10. Ismail F.Y., Fatemi A., Johnston M.V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur. J. Paediatr Neurol. 2017; 21 (1): 23–48. DOI: 10.1016/j.ejpn.2016.07.007.
11. Bernhardi R., Bernhardi L., Eugenín J. What Is Neural Plasticity? Adv. Exp. Med. Biol. 2017; 1015: 1000–1015. DOI: 10.1007/978-3-319-62817-2_1.
12. Sasmita A.O., Kuruvilla J., Kiong Ling A.P. Harnessing neuroplasticity: modern approaches and clinical future. Int. J. Neurosci. 2018; 28 (11): 1061–1077. DOI: 10.1080/00207454.2018.1466781
13. Iznak A.F. Neuronal plasticity as one of the aspects of pathogenesis and therapy of affective disorders. Psikhiatriya i psikhofarmakoterapiya = J. Psychiatrist and psychopharm. 2005; 7 (1): 24–27. (in Russ.). https://www.elibrary.ru/item.asp?id=20343304
14. Gusev E.I., Bogolepova A.N. The role of neuroplasticity processes in the development of depressive disorders. Trudnyi patsient = Difficult patient. 2010; 8 (10): 11–16. (in Russ.). https://www.elibrary.ru/item.asp?id=16910849
15. Komleva Yu.K., Salmina A.B., Prokopenko S.V. et al. Changes in structural and functional plasticity of the brain induced by environmental enrichment. Vestnik RAMN = Bulletin of the Russian Academy of Medical Sciences. 2013; 68 (6): 39–48. (in Russ.). https://www.elibrary.ru/ item.asp?id=19139669
16. Gulyaeva N.V. Molecular mechanisms of neuroplasticity: an expanding universe. Biokhimiya = Biochem. 2017; 82 (3): 365–371. (in Russ.). https://www.elibrary.ru/item.asp?id=29008499
17. Kempermann G., Kuhn H.G., Gage F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997; 386 (6624): 493–495. DOI: 10.1038/386493a0.
18. Rampon C., Jiang C.H., Dong H. et al. Effects of environmental enrichment on gene expression in the brain. Proc. Natl. Acad. Sci. USA. 2000; 97: 12880–12884. DOI: 10.1073/pnas.97.23.12880.
19. Shors T.J., Miesegaes G., Beylin A. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001; 410: 372–376. DOI: 10.1038/35066584.
20. Jankowsky J.L., Melnikova Т., Fadale D.J. et al. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimers disease. J. Neurosci. 2005; 25: 5217–5224. DOI: 10.1523/JNEUROSCI.5080-04.2005.
21. Kostenko E.V. Neuroplasticity as basis for modern concepts of neurorehabilitation. Meditsinskii alfavit = Med. alphabet. 2016; 2 (14-277): 5–11. (in Russ.). https://www.elibrary.ru/item.asp?id=26727232
22. Gomazkov O.A. New cells of adult brain and regulation of social behavior. Uspekhi sovremennoi biologii = Adv. modern biol. 2018; 138 (1): 57–67. (in Russ.). DOI: 10.7868/S0042132418010052
23. Snyder J.S., Cameron H.A. Could adult hippocampal neurogenesis be relevant for human behavior? Behav. Brain Res. 2012; 227 (2): 384–390. DOI: 10.1016/j.bbr.2011.06.024.
24. Snyder J.S., Soumier A., Brewer M. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011; 476 (7361): 458–461. DOI: 10.1038/nature10287.
25. Lieberwirth C., Wang Z. The social environment and neurogenesis in the adult mammalian brain. Front Hum. Neurosci. 2012; 6: 118. DOI: 10.3389/fnhum.2012.00118
26. Wu H., Yan H., Yang Y. et al. Occupational Neuroplasticity in the Human Brain: A Critical Review and Meta-Analysis of Neuroimaging Studies. Front Hum. Neurosci. 2020; 14: 215. DOI: 10.3389/fnhum.2020.00215.
27. Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962; 135: 1127–1128. DOI: 10.1126/science.135.3509.1127
28. Kempermann G., Jessberger S., Steiner B., Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends in Neurosci. 2004; 27 (8): 447–452. DOI: 10.1016/j.tins.2004.05.013.
29. Aimone J.B., Wiles J., Gage F.H. Potential role for adult neurogenesis in the encoding of time in new memories. Nature Neuroscience. 2006; 9: 723–727. DOI: 10.1038/nn1707.
30. Özen I., Boix J., Paul G. Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? Clin. and Translat. Medic. 2012; 1: 30. DOI: 10.1186/2001-1326-1-30.
31. Lledo P.M., Alonso M., Grubb M.S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 2006; 7 (3): 179–193. DOI: 10.1038/nrn1867.
32. Carleton A., Petreanu L.T., Lansford R. Becoming a new neuron in the adult olfactory bulb. Nature. Neuroscience. 2003; 6 (5): 507–518. DOI: 10.1038/nn1048.
33. Mackowiak M., Chocyk A., Markowicz-Kula K., Weedzony K. Neurogenesis in the adult brain. Pol. J. Pharmacol. 2004; 56 (1): 673–687. https://pubmed.ncbi.nlm.nih.gov/15662080/
34. Abrous D.N., Koehl M., Le Moal M. Adult neurogenesis: From precursors to network and physiology. Physiol. Rev. 2005; 85 (8): 523–569. DOI: 10.1152/physrev.00055.2003.
35. Seaberg R.M., van der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 2003; 26 (3): 125–131. DOI: 10.1016/S0166-2236(03)00031-6.
36. Tukayev R.D. The phenomenon of neurogenesis of the adult brain in experimental and clinical studies; aspects of the etiopathogenesis of mental disorders, psychopharmacotherapy and psychotherapy. Sotsialnaya i klinicheskaya psikhiatriya = Social and clinics. psychiatry. 2008; 18(2):96-102. In Russ.). https://www.elibrary.ru/item.asp?id=19016051
37. Maltsev D.I., Podgornyi O.V. Molecular and cellular mechanisms regulating quiescence and division of the hippocampal stem cells. Neirokhimiya = Neurochem. 2020; 37 (4): 291–310. (in Russ.). https://www.elibrary.ru/item.asp?id=44038633
38. Cameron H.A., McKay R.D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp Neurol. 2001; 435: 406–417. DOI: 10.1002/cne.1040.
39. Bekhtereva N.P. Healthy and diseased of the brain. Leningrad. Science. 1988: 208 (in Russ.). https://www.elibrary.ru/item.asp?id=35045195
40. Aimone J.B., Wiles J., Gage F.H. Computational Influence of Adult Neurogenesis on Memory Encoding. Neuron. 2009; 61: 187–202. DOI: 10.1016/j.neuron.2008.11.026.
41. Cameron H.A., Glover L.R. Adult neurogenesis: beyond learning and memory. Annu. Rev. Psychol. 2015; 66: 53–81. DOI: 10.1146/annurev-psych-010814-015006.
42. Mukhin V.N., Pavlov K.I., Klimenko V.M. The Integrative Level of the Hierarchical Spatial Orientation System in Animals. Neurosci. and Behav. Physiology. 2017; 47 (6): 675–680. https://pubmed.ncbi.nlm.nih.gov/30188673/
43. Okuyama T. Social memory engram in the hippocampus. Neurosci. Res. 2018; 129: 17–23. DOI: 10.1016/j.neures.2017.05.007.
44. Montagrin A., Saiote C., Schiller D. The social hippocampus. Hippocampus. 2018; 28 (9): 672–679. DOI: 10.1002/hipo.22797.
45. Kam M., Curtis M.A., Glashan Mc. The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. J. Chem. Neuroanat. 2008; 37: 196–205. DOI: 10.1016/j.jchemneu.2008.12.009.
46. Kalinina N.I., Sysoeva V.Yu., Rubina K.A. et al. Mesenchymal stem cells in the processes of tissue growth and repair. Acta Naturae. 2011; 3 (4): 32–39. (in Russ.). https://www.elibrary.ru/item.asp?id=17704758
47. Kuhn H.G., Dickinson-Anson H., Gage F.H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 1996; 16 (6): 2027–2033. DOI: 10.1523/JNEUROSCI.16-06-02027.1996.
48. Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 2001; 21: 6706–6717. DOI: 10.1523/JNEUROSCI.21-17-06706.2001.
49. Gascon E., Vutskits L., Zhang H. Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zone-derived neuronal progenitors in vitro. Eur. J. Neurosci. 2005; 21: 69–80. DOI: 10.1111/j.1460-9568.2004.03849.x.
50. Tropepe V., Craig C.G., Morshead C.M., van der Kooy D. Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J. Neurosci. 1997; 17: 7850–7859. DOI: 10.1523/JNEUROSCI.17-20-07850.1997.
51. Brabley C.A., Peineau S., Taghibiglou C. et al. A pivotal role of GSK-3 in synaptic plasticity. Frontiers in Molecular Neuroscience. 2012; 5: 16–26. DOI: 10.3389/fnmol.2012.00013.
52. Kim T.Y., Hur E.M., Snider W.D., Zhou F.Q. Role of GSK3 signaling in neuronal morphogenesis. Frontiers in Molecular Neuroscience. 2011; 4: 31–39. DOI: 10.3389/fnmol.2011.00048.
53. Cameron H.A., McEwen B.S., Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J. Neurosci. 1995; 15 (6): 4687–4692. DOI: 10.1523/JNEUROSCI.15-06-04687.1995.
54. Brezun J.M., Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. J. Neurosci. 1999; 89 (4): 999–1002. DOI: 10.1016/s0306-4522(98)00693-9.
55. Kulkarni V.A., Jha S., Vaidya V.A. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur. J. Neurosci. 2002; 16 (10): 2008–2012. DOI: 10.1046/j.1460-9568.2002.02268.x.
56. Hoglinger G.U., Rizk P., Muriel M.P. Dopamine depletion impairs precursor cell proliferation in Parkinsons disease. Nat. Neurosci. 2004; 7 (7): 726–735. DOI: 10.1038/nn1265.
57. Cameron H.A. Gould E Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neurosci. 1994; 61 (1-2): 203–209. DOI: 10.1016/0306-4522(94)90224-0.
58. Tanapat P., Hastings N.B., Reeves A.J. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J. Neurosci. 1999; 19 (14): 5792–5801. DOI: 10.1523/JNEUROSCI.19-14-05792.1999.
59. Bergami M., Massserdotti G. A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron. 2015; 85 (4): 710–717. DOI: 10.1016/j.neuron.2015.01.001.
60. Cassilhas R.C., Tufik S., Túlio de Mello M. Physical exercise, neuroplasticity, spatial learning and memory. Cell. Mol. Life Sci. 2016; 73 (5): 975–983. DOI: 10.1007/s00018-015-2102-0.
61. Gould E., Beylin A., Tanapat P. Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci. 1999; 2 (3): 260–265. DOI: 10.1038/6365.
62. Clelland C.D., Choi M., Romberg C. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Sci. 2009; 325: 210–213. DOI: 10.1126/science.1173215.
63. Kitamura T., Inokuchi K. Role of adult neurogenesis in hippocampal-cortical memory consolidation. Mol. Brain. 2014; 7: 13. DOI: 10.1186/1756-6606-7-13.
64. Wang W., Lu S., Li T. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function. J. Neurosci. 2015; 35 (20): 7833–7849. DOI: 10.1523/JNEUROSCI.3745-14.2015.
65. Meng F.T., Zhao J., Ni R.J. Beneficial effects of enriched environment on behaviors were correlated with decreased estrogen and increased BDNF in the hippocampus of male mice. Neuro. Endocrinol. Lett. 2015; 36 (5): 490–497. https://pubmed.ncbi.nlm.nih.gov/26707050/
66. Kempermann G., Kuhn H.G., Gage F.H. Experienceinduced neurogenesis in the senescent dentate gyrus. J. Neurosci. 1998; 18: 3206–3212. DOI: 10.1523/JNEUROSCI.18-09-03206.1998.
67. Wu M.V., Shamy J.L., Bedi G. Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus. Neuropsychopharm. 2014; 39 (8): 1861–1871. DOI: 10.1038/npp.2014.33.
68. Fiore M., Amendola T., Triaca V. Agonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: possible implication for brain progenitor cells activation. Eur. J. Neurosci. 2003; 17 (7): 1455–1464. DOI: 10.1046/j.1460-9568.2003.02573.x.
69. Watanabe N., Yamamoto M. Neural mechanisms of social dominance. Front Neurosci. 2015; 9: 154. DOI: 10.3389/fnins.2015.00154.
70. Bakermans-Kranenburg M.J., van Ijzendoorn M.H., Pijlman F.T. Experimental evidence for differential susceptibility: dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers externalizing behavior in a randomized controlled trial. Dev. Psychol. 2008; 44 (1): 293–300. DOI: 10.1037/0012-1649.44.1.293.
71. Zaletel I., Filipović D., Puškaš N. Hippocampal BDNF in physiological conditions and social isolation. Rev. Neurosci. 2017; 28 (6): 675–692. DOI: 10.1515/revneuro-2016-0072.
72. Biggio F., Mostallino M.C., Talani G. Social enrichment reverses the isolation-induced deficits of neuronal plasticity in the hippocampus of male rats. Neuropharm. 2019; 151: 45–54. DOI: 10.1016/j.neuropharm.2019.03.030.
73. Smagin D.A., Park J.H., Michurina T.V. Altered hippocampal neurogenesis and amygdalar neuronal activity in adult mice with repeated experience of aggression. Front. Neurosci. 2015; 9: 443. DOI: 10.3389/fnins.2015.00443.
74. Chancellor L.V., Roth T.C., LaDage L.D., Pravosudov V.V. The effect of environmental harshness on neurogenesis: a large-scale comparison. Dev. Neurobiol. 2011; 71 (3): 246–252. DOI: 10.1002/dneu.20847.
75. Mortimer J.A., Snowdon D.A., Markesbery W. Head circumference, education and risk of dementia: findings from the nun study. J Clin. Exp. Neuropsychol. 2003; 25: 671–679. DOI: 10.1076/jcen.25.5.671.14584.
76. Piras F., Cherubini A., Caltagirone C., Spalletta G. Education mediates microstructural changes in bilateral hippocampus. Hum. Brain Mapp. 2011; 32 (2): 282–289. DOI: 10.1002/hbm.21018.
77. Lotze M., Domin M., Schmidt C.O. et al. Income is associated with hippocampal/amygdala and education with cingulate cortex grey matter volume. Sci. Rep. 2020; 10 (1): № art. 18786. DOI: 10.1038/s41598-020-75809-9.
78. Alexander G., Furey M., Grady C. et al. Association of premorbid intellectual function with cerebral metabolism in Alzheimers disease: Implications for the cognitive reserve hypothesis. Am J Psychiatry. 1997; 154: 165–172. DOI: 10.1176/ajp.154.2.165.
79. Pavlov K.I., Mukhin V.N., Klimenko V.M., Anisimov V.N. Telomere-telomerase system in aging, norm and pathology. Adv. Gerontol. 2017; 30 (1): 17–26. https://pubmed.ncbi.nlm.nih.gov/ 28557385/
80. Maguire E.A., Woollett K., Spiers H.J. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus. 2006; 16 (12): 1091–1101. DOI: 10.1002/hipo.20233.
81. Malenka R.C., Nicoll R.A. Long-term potentiation – a decade of progress? Sci. 1999; 285: 1870–1874. DOI: 10.1126/science.285.5435.1870.
82. Dolgacheva L.P., Tuleukhanov S.T., Zinchenko V.P. Participation of Ca2+-permeable AMPA- receptors in synaptic plasticity. Biologicheskie membrany = Biol. membranes. 2020; 37 (3): 175–187. (in Russ.). https://www.elibrary.ru/item.asp?id=39266908
83. Tsvetkov E.A., Suderevskaya E.I., Veselkin N.P. The role of long-term potentiation in the mechanism of conditioned reflex learning. Zhurnal evolyutsionnoi biokhimii i fiziologii = J. Evolution. biochem. and fiziol. 2011; 47 (3): 185–192. (in Russ.). https://www.elibrary.ru/item.asp?id=16398049
84. Shnitko S.N., Strinkevich A.L. Mechanisms of Nervous Memory. Message 3. Mechanisms of long-term memory. Voennaya meditsina = Military medicine. 2008; 2 (7): 83–86. (in Russ.). https://www.elibrary.ru/item.asp?id=21226874
85. Kudryashova I.V. Analysis of the conditions necessary for the beginning the consolidation process in the model of long-term synaptic potentiation. Neirokhimiya = Neurochem. 2013; 30 (3): 207–215. (in Russ.). https://www.elibrary.ru/item.asp?id=19569600
86. Leslie J.H., Nedivi E. Activity-regulated genes as mediators of neural circuit plasticity. Prog. Neurobiol. 2011; 94 (3): 223–237. DOI: 10.1016/j.pneurobio.2011.05.002.
87. Mayer M.L., Westbrook G.L., Guthrie P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984; 309: 261–263. DOI: 10.1038/309261a0.
88. Khodosevich K., Jacobi E., Farrow P. et al. Coexpressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function. Neuron. 2014; 83: 601–615. DOI: 10.1016/j.neuron.2014.07.004.
89. McGee T.P., Bats C., Farrant M., Cull-Candy S.G. Auxiliary subunit GSG1L acts to suppress calcium-permeable AMPA receptor function. J. Neurosci. 2015; 35 (49): 16171–16179. DOI: 10.1523/JNEUROSCI.2152-15.2015.
90. Engelhardt J. AMPA Receptor Auxiliary Proteins of the CKAMP Family. Int. J. Mol. Sci. 2019; 20 (6): 1460. DOI: 10.3390/ijms20061460.
91. Henley J.M., Wilkinson K.A. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin. Neurosci. 2013; 15 (1): 11–27. DOI: 10.31887/DCNS.2013.15.1/jhenley.
92. Henley J.M., Wilkinson K.A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 2016; 17: 337–350. DOI: 10.1038/nrn.2016.37.
93. Cheng G.R.., Li X.Y., Xiang Y.D., Liu D., McClintock S.M., Zeng Y. The implication of AMPA receptor in synaptic plasticity impairment and intellectual disability in fragile X syndrome. Physiol. Res. 2017; 66 (5): 715–727. DOI: 10.33549/physiolres.933473.
94. Alberini C.M., Kandel E.R. The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol. 2014; 7 (1): 345–364. DOI: 10.1101/cshperspect.a021741.
Опубликован
2021-10-01
Как цитировать
Павлов, К., & Мухин, В. (2021). ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ НЕЙРОПЛАСТИЧНОСТИ КАК ОСНОВА ПСИХИЧЕСКИХ ПРОЦЕССОВ И СОЦИАЛЬНО-ПРОФЕССИОНАЛЬНОЙ АДАПТАЦИИ (ЧАСТЬ 1). Психология. Психофизиология, 14(3), 119-136. https://doi.org/10.14529/jpps210312
Раздел
Психофизиология