PHYSIOLOGICAL MECHANISMS OF NEUROPLASTICITY AS A BASIS OF MENTAL PROCESSES AND SOCIO-PROFESSIONAL ADAPTATION (PART 2)

  • K. I. Pavlov N.G. Kuznetsov Naval Academy (17/1 Ushakovskaya nab., St. Petersburg, Russian Federation,197045) 1_247_@ya.ru
  • M. M. Mukhin Valerii Nikolaevich Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (12 Akademika Pavlova str., Saint Petersburg, Russian Federation, 197376) https://orcid.org/0000-0003-0999-6847 Valery.Mukhin@gmail.com
Keywords: neuroplasticity, neurogenesis, synaptic plasticity, long-term potentiation, cognitive functions, social and professional adaptation

Abstract

Abstract. The paper aims to summarize modern research dedicated to the physiological mechanisms of neuroplasticity, which is considered as the basis of mental processes and socio-professional adaptation. Analysis of literary sources allowed to define neuroplasticity as the ability of the brain to adapt to internal and external circumstances through optimal structural and functional changes. The basis of neuroplasticity is a complex chain of events associated with neurogenesis and apoptosis, synaptic plasticity, changes in the electrical excitability of nerve cells, gene expression, and neuron-glial interactions. The second part of the review considers the physiological mechanisms of neuroplasticity, which are associated with expression of early and late genes. The expression of these genes is the result of long-term potentiation of synaptic transmission. The physiological role of these genetic factors in neurogenesis, synaptic plasticity, emotional and cognitive processes, adaptive behavior and intellectual development was described. The review also considers research on the role of microglia and macroglia in neuroplasticity, mental processes and their electrophysiological correlates, which provide adaptation to the social environment.

Downloads

Download data is not yet available.

Author Biographies

K. I. Pavlov , N.G. Kuznetsov Naval Academy (17/1 Ushakovskaya nab., St. Petersburg, Russian Federation,197045)

Candidate of Psychological Sciences, Senior researcher of the Research Department (professional psychological support)

M. M. Mukhin Valerii Nikolaevich , Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (12 Akademika Pavlova str., Saint Petersburg, Russian Federation, 197376)

Candidate of Medical Sciences, Senior Researcher, I.P. Pavlov Physiological Department

References

1. Anokhin K.V. [Expression of early genes in mechanisms of memory]. Vestnik RAMN = Bulletin of the Russian Academy of Medical Sciences. 1998;12:58–61. (in Russ.).
2. Suge R., McCade B.L. Early stages of memory formation in filial imprinting: Foslike immunoreactivity and behavior in the domestic chick. Journal of Neuroscience. 2004;123(4):847–856. DOI: 10.1016/j.neuroscience.2003.11.002.
3. Vianna M.R., Izquirdo L.A., Barros D.M. Differential role of hippocampal cAMP-dependent protein kinase in short- and long-term memory. Neurochemical Research. 2000;25(5):621–626. DOI: 10.1023/a:1007502918282.
4. Nikitin V.P., Sherstnev V.V. [The concept of the integrative activity of the neuron and the mechanisms of neuroplasticity]. Neirokhimiya = Neurochem. 2009;26(1):35–41. (in Russ.)
5. Hoz L., Gierej D., Lioudyno V. Blocking c-Fos Expression Reveals the Role of Auditory Cortex Plasticity in Sound Frequency Discrimination Learning. Cerebral Cortex. 2018;28(5):1645–1655. DOI: 10.1093/cercor/bhx060.
6. Grassi-Zucconi G., Menegazzi M., Prati A.D., Bassetti A., Montagnese P., Mandile P., Cosi C., Bentivoglio M. c-fos mRNA is spontaneously induced in the rat brain during the activity period of the circadian cycle. European Journal of Neuroscience. 1993;5(8):1071–1080. DOI: 10.1111/j.1460–9568.1993.tb00960.x.
7. Hawkins R.D., Kandel E.R., Bailey C.H. Molecular mechanisms of memory storage in Aplysia. The Biological Bulletin. 2006;210(3):174–191. DOI: 10.2307/4134556.
8. Jodar L., Kaneto H. Synaptic plasticity: stairway to memory. Japanese Journal of Pharmacology. 1995;68(4):259–387. DOI: 10.1254/jjp.68.359.
9. Sandi S., Merino J.J., Cordero M.I. Modulation of hippocampal NCAM polysialytation and spatal memory consolidation by fear conditioning. Biological Psychiatry. 2003;54(6):599–607. DOI: 10.1016/s0006–3223(03)00182–3.
10. Andreev A.E., Kleimenova T.S., Drobintseva A.O., Polyakova V.O., Kvetnoy I.M. Signaling molecules involved in the formation of new neuronal endings in endometriosis. Nauchnye rezultaty biomeditsinskikh issledovanii = Scientific results of biomedical research. 2019;5(1):94–107. (in Russ.)
11. Doyan Y.I., Sidorova Y.K., Kicherova O.A., Reikhert L.I. Biochemical and clinical view of the neurotrophic factor of the brain (BDNF). Meditsinskaya nauka i obrazovanie Urala = Medical science and education of the Urals. 2018;1:165–169. (in Russ.).
12. Chen Z.Y., Patel P.D., Sant G., Meng C.X., Teng K.K., Hempstead B.L. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. The Journal of Neuroscience. 2004;24(18):4401–4411. DOI: 10.1523/JNEUROSCI.0348–04.2004.
13. Pearson-Fuhrhop K.M., Kleim J.A., Cramer S.C. Brain plasticity and genetic factors. Topics in Stroke Rehabilitation. 2009;16(4):282–299. DOI: 10.1310/tsr1604–282.
14. Kryzhanovskaya S.Yu., Zapara M.A., Glazachev O.S. [Neurotrophins and adaptation to environmental stimuli: opportunities for expanding the “therapeutic potential”]. Vestnik mezhdunarodnoi Akademii nauk = Bulletin of the International Academy of Sciences. 2020;1:36–43. (in Russ.)
15. Hassan A., Arnold B.M., Caine S., Toosi B.M. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alerts neuronal hypoxia- and plasticity-associated protein expression. PLoS One. 2018;13(5):e0197486. DOI: 10.1371/journal.pone.0197486.
16. Gudasheva T.A., Povarnina P.Y., Seredenin S.B., Tarasyuk A.V. [Brain neurotrophic factor and their low molecular weight mimetics]. Farmakokinetika i farmakodinamika = Pharmacokinetics and pharmacodynamics. 2017;3:3–13. (in Russ.)
17. Geist P.A., Dulka B.N., Barnes A., Totty M., Datta S. BNDF heterozygosity is associated with memory deficits and alterations in cortical and hippocampal EEG power. Behavioural Brain Research. 2017;332:154–163. DOI: 10.1016/j.bbr.2017.05.039.
18. Marinho V., Pinto G.R., Figueiredo R., Ayres C., Bandeira J., Teixeira S. The BDNF Val66Met Polymorphism Promotes Changes in the Neuronal Integrity and Alters the Time Perception. Journal of Molecular Neuroscience. 2019;67(1):82–88. DOI: 10.1007/s12031–018–1212–1.
19. Ermakov P.N., Vorobieva E.V., Kovsh E.M., Stoletny A.S. [Features of evoked brain activity in the analysis of emotiogenic images in carriers of polymorphic variants of the BDNF and HTR2A genes]. Eksperimentalnaya psikhologiya = Experimental psychology. 2017;10 (3):65–85. (in Russ.)
20. Gatt J.M., Kuan S.A., Dobson-Stone C., Paul R.H., Joffe R.T. Association between BDNF Val66Met polymorphism and trait depression is mediated via resting EEG alpha band activity. Biological Psychology. 2008;79(2):275–284. DOI: 10.1016/j.biopsycho.2008.07.004.
21. Roy N., Barry R.J., Fernandez F.E., Lim C.K. Electrophysiological correlates of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism. Scientific Reports. 2020;10(1):17915. DOI: 10.1038/s41598–020–74780–9.
22. Kim K.M., Choi S.W., Lee J., Kim J.W. EEG correlates associated with the severity of gambling disorder and serum BDNF levels in patients with gambling disorder. Journal of Behavioral Addictions. 2018;7(2):331–338. DOI: 10.1556/2006.7.2018.43.
23. Guindalini C., Mazzotti D.R., Castro L.S., DAurea C.V.R. Brain–derived neurotrophic factor gene polymorphism predicts interindividual variation in the sleep electroencephalogram. Journal of Neuroscience Research. 2014;92(8):1018–1023. DOI: 10.1002/jnr.23380.
24. Bachmann V., Klein C., Bodenmann S. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. 2012;35(3):335–344. DOI: 10.5665/sleep.1690.
25. Stepanichev M.Y. [Modern approaches and prospects for the use of gene therapy in Alzheimers disease]. Neirokhimiya = Neurochemistry. 2011;28(3):181–191. (in Russ.).
26. Sokolova M.G., Alekseeva T.M., Lobzin S.V., Demeshonok V.S., Nikishina O.A., Ulyanova N.V. [Neurotrophic factors. Prospects for application in clinical neurology]. Vestnik Severo-Zapadnogo gosudarstvennogo meditsinskogo universiteta im. I.I. Mechnikova = Bulletin of the I.I. Mechnikov Northwestern State Medical University. 2014;6(3):75–81. (in Russ.).
27. Isaev N.K., Stelmashuk E.V., Henrikhs E.E. [The role of nerve growth factor in plastic restructuring of the brain]. Biokhimiya = Biochemistry. 2017;82:429. (in Russ.).
28. Sherstnev V.V., Gruden M.A., Storozheva Z.I., Proshin A.T. [Heterochrony of participation of neurotrophic factors in the neurochemical organization of learning and memory processes in a mature organism]. Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova = Russian Journal of Physiology. 2001;87(6):752–761. (in Russ.).
29. Shtark M.B., Shevchuk E.V., Viazovoĭ V.V. Electroencephalographic effects of the intracentral administration of antibodies to brain-specific antigen S–100. Bulletin of Experimental Biology and Medicine. 1977;84(8):158–160.
30. ODowd B.S., Zhao W.Q., Ng K.T., Robinson S.R. Chicks injected with antisera to either S–100α or S–100β protein develop amnesia for a passive avoidance task. Neurobiology of Learning and Memory. 1997;67(3):197–206. DOI: 10.1006/nlme.1997.3766.
31. Sakatani S., Seto-Ohshima A., Itohara S., Hirase H. Impact of S100B on local field potential patterns in anesthetized and kainic acid-induced seizure conditions in vivo. European Journal of Neuroscience. 2007;25(4):1144–1154. DOI: 10.1111/j.1460–9568.2007.05337.x.
32. Donato R., Cannon B.R., Sorci G., Riuzzi F., Hsu K., Weber D.J., Geczy C.L. Functions of S100 proteins. Current Molecular Medicine. 2013;13(1):24–57.
33. Sorci G., Riuzzi F., Arcuri C. S100B protein in tissue development, repair and regeneration. World Journal of Biological Chemistry. 2013;4(1):1–12. DOI: 10.4331/wjbc.v4.i1.1.
34. Krasnov A.V. [Astrocytic proteins of the brain: structure, function, clinical significance]. Nevrologicheskii zhurnal = Neurological journal. 2012;1:37–42. (in Russ.).
35. Zhang L., Liu W., Alizadeh D., Zhao D. S100B attenuates microglia activation in gliomas: possible role of STAT3 pathway. Glia. 2011;59:486–498. DOI: 10.1002/glia.21118.
36. Bazhanova E.D., Molodtsov V.N., Pavlov K.I. Aging–related changes in the expression of apoptosis–associated molecules in neurosecretory cells of the mouse hypothalamus. Neuroscience and Behavioral Physiology. 2008;38(1):43–47. DOI: 10.1007/s11055–008–0006–2.
37. Kadyrova I.A., Mindubaeva F.A., Grizhibovsky A.M. [A systematic review of methods for predicting the outcome of cerebral stroke]. Ekologiya cheloveka = Human ecology. 2015;10:55–64.
(in Russ.).
38. Bianchi R., Kastrisianaki I., Giambanco R., Donato R., Bianchi E. S100B protein stimulates microglia migration via RAGE-dependent upregulation of chemokine expression and release. Journal of Biological Chemistry. 2011;286:7214–7226. DOI: 10.1074/jbc.M110.169342.
39. Vinarskaya A.H., Bogodvid T.H., Andrianov V.V. [Calcium-binding protein S100 and some problems of neurology. Eurasian Scientific]. Evraziiskoe nauchnoe ob"edinenie = Union. 2018;4–3(62):146–150. (in Russ.).
40. Nishiyama H., Knopfel T., Endo S., Itohara S. Glial protein S100B modulates long–term neuronal synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:4037–4042. DOI: 10.1073/pnas.052020999.
41. Talypov A.E., Puras Iu.V., Godkov M.A., Sharifullin F.A., Kuksova N.S., Sosnovskiĭ E.A., Krylov V.V. Levels of S100β protein in patients with mild traumamic brain injury. Journal of Neurology and Psychiatry named after S.S. Korsakov. 2010;110(12):4–8.
42. Markelova E.V., Zenina A.A., Kadyrov R.V. [Neuropeptides as markers of brain damage]. Sovremennye problemy nauki i obrazovaniya = Modern problems science and education. 2018;5:206–219. (in Russ.).
43. Malykh S.B., Malykh A.S., Karunas A.S., Enikeeva R.F., Davydova Yu.D., Khusnutdinova E.K. Molecular genetic studies of cognitive abilities. Genetics. 2019;55(7):741–754. (in Russ.).
44. Mustafin R.N., Kazantseva A.V., Malykh S.B., Khusnutdinova E.K. Genetic mechanisms of cognitive development. Genetics. 2020;56(8):865–877. (in Russ.).
45. Berto S., Wang G.Z., Germi J. Human genomic signatures of brain oscillations during memory encoding. Cerebral Cortex. 2018;28(5):1733–1748. DOI: 10.1093/cercor/bhx083.
46. Christoforou A., Espeseth T., Davies G. GWAS based pathway analysis differentiates between fluid and crystallized intelligence. Genes, Brain and Behavior. 2014;13(7):663–674. DOI: 10.1111/gbb.12152.
47. Davies G., Lam M., Herris S.E. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications. 2018;9(1):2098. DOI: 10.1038/s41467–018–04362–x.
48. Sasaki T., Ishikawa T., Abe R. Astrocyte calcium signaling orchestrates neuronal synchronization in organotypic hippocampal slices. The Journal of Physiology. 2014;592:2771–2783. DOI: 10.1113/jphysiol.2014.272864.
49. Santello M., Calì C., Bezzi P. Gliotransmission and the tripartite synapse. Advances in Experimental Medicine and Biology. 2012;970:307–312. DOI: 10.1007/978–3–7091–0932–8_14.
50. Henneberger C., Papouin T., Oliet S.H., Rusakov D.A. Longterm potentiation depends on release of D-serine from astrocytes. Nature. 2010;463:232–236. DOI: 10.1038/nature08673.
51. Lee H.U., Yamazaki Y., Tanaka K.F. Increased astrocytic ATP release results in enhanced excitability of the hippocampus. Glia. 2013;61(2):210–224. DOI: 10.1002/glia.22427.
52. Gomazkov O.A. [Astrocyte of the brain and synaptic discord: neurodegenerative and a mental pathology]. Uspekhi sovremennoi biologii = Successes of modern biology. 2020;140(2): 130–139. (in Russ.).
53. Chan W.Y., Kohsaka S., Rezaie P. The origin and cell lineage of microglia: new concepts. Brain Research Reviews. 2007;53:344–354. DOI: 10.1016/j.brainresrev.2006.11.002.
54. Tishkina A.O., Stepanichev M.Yu., Aniol V.A., Gulyaeva N.V. [Functions of microglia in the halthy brain: focus on neoruplasticity]. Uspekhi fiziologicheskikh nauk = Successes of physiological sciences. 2014;45(4):3–18. (in Russ.).
55. Kettenmann H., Hanisch U., Noda M., Verkhratsky A. Physiology of microglia. Physiological Reviews. 2011;91(2):461–553. DOI: 10.1152/physrev.00011.2010.
56. Levin S.G., Godukhin O.V. The modulating effect of cytokines on the mechanisms of synaptic plasticity in the brain. Biokhimiya = Biochemistry. 2017;82(3):397–409. (in Russ.).
57. Goshen I., Yirmia R. The role of pro-inflammatory cytokines in memory processes and neural plasticity. Psychoneuroimmunology Journal. 2007;1:337–367.
58. Taishi P., Churchill L., Wang M., Kay D. TNF alpha siRNA reduces brain TNF and EEG delta wave activity in rats. Brain Research. 2007;1156:125–132. DOI: 10.1016/j.brainres.2007.04.072.
59. Kim J.S., Kang E.S., Bahk Y.C. Exploratory Analysis of Behavioral Impulsivity, Pro-inflammatory Cytokines, and Resting–State Frontal EEG Activity Associated With Non-suicidal Self-Injury in Patients With Mood Disorder. Front Psychiatry. 2020;26(11):124. DOI: 10.3389/fpsyt.2020.00124.
60. Borghini G., Arico P., Di. Flumeri G., Cartocci G., Colosimo A., Bonelli S. EEG-Based Cognitive Control Behaviour Assessment: an Ecological study with Professional Air Traffic Controllers. Scientific Reports. 2017;7:547. DOI: 10.1038/s41598–017–00633–7.
61. Dai Z., Souza J., Lim J. EEG Cortical Connectivity Analysis of Working Memory Reveals Topological Reorganization in Theta and Alpha Bands. Frontiers in Human Neuroscience. 2017;11:237. DOI: 10.3389/fnhum.2017.00237.
62. Stock E.D., Christensen R.N., Huie J.R., Tovar C.A., Miller B.A., Nout Y.S., Bresnahan J.C., Beattie M.S., Ferguson A.R. Tumor necrosis factor alpha mediates GABA(A) receptor trafficking to the plasma membrane of spinal cord neurons in vivo. Neural Plasticity. 2012;2012:261345. DOI: 10.1155/2012/261345.
63. Munckhof B., Vries E., Braun K.P.J., Boss H.M. Serum inflammatory mediators correlate with disease activity in electrical status epilepticus in sleep (ESES) syndrome. Epilepsia. 2016;57(2):45–50. DOI: 10.1111/epi.13274.
64. May U., Schiffelholz T., Baier P.C., Krueger J.M. IL–6–trans–signalling increases rapid-eye-movement sleep in rats. European Journal of Pharmacology. 2009;613(1–3):141–145. DOI: 10.1016/j.ejphar.2009.04.023.

References on translit

-
Published
2021-12-31
How to Cite
Pavlov, K., & Mukhin Valerii Nikolaevich, M. V. N. (2021). PHYSIOLOGICAL MECHANISMS OF NEUROPLASTICITY AS A BASIS OF MENTAL PROCESSES AND SOCIO-PROFESSIONAL ADAPTATION (PART 2). Psychology. Psychophysiology, 14(4), 128-143. https://doi.org/10.14529/jpps210412
Section
Psychophysiology