PHYSIOLOGICAL MECHANISMS OF NEUROPLASTICITY AS A BASIS OF MENTAL PROCESSES AND SOCIO-PROFESSIONAL ADAPTATION (PART 1)

  • K. I. Pavlov N.G. Kuznetsov Naval Academy (17/1 Ushakovskaya nab., St. Petersburg, Russian Federation,197045) Pavlov@ya.ru
  • V. N. Mukhin Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (12 Akademika Pavlova str., Saint Petersburg, Russian Federation, 197376) https://orcid.org/0000-0003-0999-6847 Valery.Mukhin@gmail.com
Keywords: neuroplasticity, neurogenesis, synaptic plasticity, long-term potentiation, cognitive functions, social and professional adaptation

Abstract

Abstract. The paper aims to summarize modern research dedicated to the physiological mechanisms of neuroplasticity, which considered to be the basis of mental processes and socio-professional adaptation. Analysis of literary sources allowed us to define neuroplasticity as the ability of the brain to adapt to internal and external circumstances through optimal structural and functional changes. The basis of neuroplasticity is a complex chain of events associated with neurogenesis and apoptosis, synaptic plasticity, changes in the electrical excitability of nerve cells, gene expression, and neuron-glial interactions. The first part of the review considers  neuroplasticity as determined by molecular genetic factors that influence the structural and functional complexity of neural networks, the effectiveness of the integrative functions of the brain, social and professional adaptation, as well as resistance to pathological conditions. Informational and social environment, relations between members of a social group, cognitive and physical activity, new forms of behavior and professional knowledge affect the physiological mechanisms of neuroplasticity and increase the effectiveness of adaptation.

Downloads

Download data is not yet available.

Author Biographies

K. I. Pavlov , N.G. Kuznetsov Naval Academy (17/1 Ushakovskaya nab., St. Petersburg, Russian Federation,197045)

Candidate of Psychological Sciences, Senior Researcher of the Research Department (Professional Psychological Support), Military Training and Research Center of the Navy

V. N. Mukhin , Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (12 Akademika Pavlova str., Saint Petersburg, Russian Federation, 197376)

Candidate of Medical Sciences, Senior Researcher, I.P. Pavlov Physiological Department

References

1. James W. The Principles of Psychology, Henry Holt and Company, New York. 1890; 104–127. https://openlibrary.org/works/OL1502064W/The_principles_of_psychology
2. Bethe Altes und Neues über die Plastizität des Nervensystems. Archiv f. Psychiatrie. 1926; 76: 81–83. DOI: 10.1007/BF01814685
3. Konorski J. Conditioned reflexes and neuron organization. Facsim. reprint of the 1948. Cambridge biological studies series, Cambridge University Press. 1968: 89. https://archive.org/details/in.ernet.dli.2015.190856.
4. Gusev E.I., Kamchatnov P.R. The plasticity of the nervous system. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = Journal. neur. and psychiatrist. S.S. Korsakov. 2004; 100 (3): 73–79. (in Russ.) https://www.elibrary.ru/author_items.asp?authorid=91278
5. Gomazkov O.A. Neurogenesis as an adaptive function of brain. Uspekhi sovremennoi biologii = Adv. modern biol. 2013; 133 (4): 349–366. (in Russ.) https://www.elibrary.ru/item.asp?id=20174471
6. Zinserling V.A., Sapargaliyeva A.D., Vaynshenker Yu.I., Medvedev S.V. Problems of neuroplasticity and neuroprotection. Vestnik SPBGU = Bulletin of St. Petersburg State University. 2013; 4: 3–12. (In Russ.) https://www.elibrary.ru/item.asp?id=20912211
7. Galanin I.V., Naryshkin A.G., Gorelik A.L., Tabulina S.D., Michailov V.A., Skoromets T.A., Lobzin S.V. The present state of neuroplasticity in psychiatry and neurology. Vestnik Cevero-Zapadnogo gosudarstvennogo meditsinskogo universiteta im. I.I. Mechnikova = Bulletin of the North-Western State med. un. I.I. Mechnikov. 2015; 7 (1): 134–143. (in Russ.). https://www.elibrary.ru/ item.asp?id=24307750
8. Gulyaeva N.V. Fundamental and translational aspects of the stress-reactivity in the ventral hippocampus: functional and biochemical mechanisms of altered neuroplasticity. Neirokhimiya = Neurochem. 2015; 32 (2): 101–111. (in Russ.). https://www.elibrary.ru/item.asp?id=23302899
9. Paltsyn A.A., Sviridkina N.B. Brain plasticity. Patogenez = Pathogenesis. 2020; 18 (3): 68–76. (in Russ.). DOI: https://doi.org/10.25557/2310-0435.2020.03.68-76
10. Ismail F.Y., Fatemi A., Johnston M.V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur. J. Paediatr Neurol. 2017; 21 (1): 23–48. DOI: 10.1016/j.ejpn.2016.07.007.
11. Bernhardi R., Bernhardi L., Eugenín J. What Is Neural Plasticity? Adv. Exp. Med. Biol. 2017; 1015: 1000–1015. DOI: 10.1007/978-3-319-62817-2_1.
12. Sasmita A.O., Kuruvilla J., Kiong Ling A.P. Harnessing neuroplasticity: modern approaches and clinical future. Int. J. Neurosci. 2018; 28 (11): 1061–1077. DOI: 10.1080/00207454.2018.1466781
13. Iznak A.F. Neuronal plasticity as one of the aspects of pathogenesis and therapy of affective disorders. Psikhiatriya i psikhofarmakoterapiya = J. Psychiatrist and psychopharm. 2005; 7 (1): 24–27. (in Russ.). https://www.elibrary.ru/item.asp?id=20343304
14. Gusev E.I., Bogolepova A.N. The role of neuroplasticity processes in the development of depressive disorders. Trudnyi patsient = Difficult patient. 2010; 8 (10): 11–16. (in Russ.). https://www.elibrary.ru/item.asp?id=16910849
15. Komleva Yu.K., Salmina A.B., Prokopenko S.V. et al. Changes in structural and functional plasticity of the brain induced by environmental enrichment. Vestnik RAMN = Bulletin of the Russian Academy of Medical Sciences. 2013; 68 (6): 39–48. (in Russ.). https://www.elibrary.ru/ item.asp?id=19139669
16. Gulyaeva N.V. Molecular mechanisms of neuroplasticity: an expanding universe. Biokhimiya = Biochem. 2017; 82 (3): 365–371. (in Russ.). https://www.elibrary.ru/item.asp?id=29008499
17. Kempermann G., Kuhn H.G., Gage F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997; 386 (6624): 493–495. DOI: 10.1038/386493a0.
18. Rampon C., Jiang C.H., Dong H. et al. Effects of environmental enrichment on gene expression in the brain. Proc. Natl. Acad. Sci. USA. 2000; 97: 12880–12884. DOI: 10.1073/pnas.97.23.12880.
19. Shors T.J., Miesegaes G., Beylin A. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001; 410: 372–376. DOI: 10.1038/35066584.
20. Jankowsky J.L., Melnikova Т., Fadale D.J. et al. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimers disease. J. Neurosci. 2005; 25: 5217–5224. DOI: 10.1523/JNEUROSCI.5080-04.2005.
21. Kostenko E.V. Neuroplasticity as basis for modern concepts of neurorehabilitation. Meditsinskii alfavit = Med. alphabet. 2016; 2 (14-277): 5–11. (in Russ.). https://www.elibrary.ru/item.asp?id=26727232
22. Gomazkov O.A. New cells of adult brain and regulation of social behavior. Uspekhi sovremennoi biologii = Adv. modern biol. 2018; 138 (1): 57–67. (in Russ.). DOI: 10.7868/S0042132418010052
23. Snyder J.S., Cameron H.A. Could adult hippocampal neurogenesis be relevant for human behavior? Behav. Brain Res. 2012; 227 (2): 384–390. DOI: 10.1016/j.bbr.2011.06.024.
24. Snyder J.S., Soumier A., Brewer M. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011; 476 (7361): 458–461. DOI: 10.1038/nature10287.
25. Lieberwirth C., Wang Z. The social environment and neurogenesis in the adult mammalian brain. Front Hum. Neurosci. 2012; 6: 118. DOI: 10.3389/fnhum.2012.00118
26. Wu H., Yan H., Yang Y. et al. Occupational Neuroplasticity in the Human Brain: A Critical Review and Meta-Analysis of Neuroimaging Studies. Front Hum. Neurosci. 2020; 14: 215. DOI: 10.3389/fnhum.2020.00215.
27. Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962; 135: 1127–1128. DOI: 10.1126/science.135.3509.1127
28. Kempermann G., Jessberger S., Steiner B., Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends in Neurosci. 2004; 27 (8): 447–452. DOI: 10.1016/j.tins.2004.05.013.
29. Aimone J.B., Wiles J., Gage F.H. Potential role for adult neurogenesis in the encoding of time in new memories. Nature Neuroscience. 2006; 9: 723–727. DOI: 10.1038/nn1707.
30. Özen I., Boix J., Paul G. Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? Clin. and Translat. Medic. 2012; 1: 30. DOI: 10.1186/2001-1326-1-30.
31. Lledo P.M., Alonso M., Grubb M.S. Adult neurogenesis and functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 2006; 7 (3): 179–193. DOI: 10.1038/nrn1867.
32. Carleton A., Petreanu L.T., Lansford R. Becoming a new neuron in the adult olfactory bulb. Nature. Neuroscience. 2003; 6 (5): 507–518. DOI: 10.1038/nn1048.
33. Mackowiak M., Chocyk A., Markowicz-Kula K., Weedzony K. Neurogenesis in the adult brain. Pol. J. Pharmacol. 2004; 56 (1): 673–687. https://pubmed.ncbi.nlm.nih.gov/15662080/
34. Abrous D.N., Koehl M., Le Moal M. Adult neurogenesis: From precursors to network and physiology. Physiol. Rev. 2005; 85 (8): 523–569. DOI: 10.1152/physrev.00055.2003.
35. Seaberg R.M., van der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 2003; 26 (3): 125–131. DOI: 10.1016/S0166-2236(03)00031-6.
36. Tukayev R.D. The phenomenon of neurogenesis of the adult brain in experimental and clinical studies; aspects of the etiopathogenesis of mental disorders, psychopharmacotherapy and psychotherapy. Sotsialnaya i klinicheskaya psikhiatriya = Social and clinics. psychiatry. 2008; 18(2):96-102. In Russ.). https://www.elibrary.ru/item.asp?id=19016051
37. Maltsev D.I., Podgornyi O.V. Molecular and cellular mechanisms regulating quiescence and division of the hippocampal stem cells. Neirokhimiya = Neurochem. 2020; 37 (4): 291–310. (in Russ.). https://www.elibrary.ru/item.asp?id=44038633
38. Cameron H.A., McKay R.D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp Neurol. 2001; 435: 406–417. DOI: 10.1002/cne.1040.
39. Bekhtereva N.P. Healthy and diseased of the brain. Leningrad. Science. 1988: 208 (in Russ.). https://www.elibrary.ru/item.asp?id=35045195
40. Aimone J.B., Wiles J., Gage F.H. Computational Influence of Adult Neurogenesis on Memory Encoding. Neuron. 2009; 61: 187–202. DOI: 10.1016/j.neuron.2008.11.026.
41. Cameron H.A., Glover L.R. Adult neurogenesis: beyond learning and memory. Annu. Rev. Psychol. 2015; 66: 53–81. DOI: 10.1146/annurev-psych-010814-015006.
42. Mukhin V.N., Pavlov K.I., Klimenko V.M. The Integrative Level of the Hierarchical Spatial Orientation System in Animals. Neurosci. and Behav. Physiology. 2017; 47 (6): 675–680. https://pubmed.ncbi.nlm.nih.gov/30188673/
43. Okuyama T. Social memory engram in the hippocampus. Neurosci. Res. 2018; 129: 17–23. DOI: 10.1016/j.neures.2017.05.007.
44. Montagrin A., Saiote C., Schiller D. The social hippocampus. Hippocampus. 2018; 28 (9): 672–679. DOI: 10.1002/hipo.22797.
45. Kam M., Curtis M.A., Glashan Mc. The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. J. Chem. Neuroanat. 2008; 37: 196–205. DOI: 10.1016/j.jchemneu.2008.12.009.
46. Kalinina N.I., Sysoeva V.Yu., Rubina K.A. et al. Mesenchymal stem cells in the processes of tissue growth and repair. Acta Naturae. 2011; 3 (4): 32–39. (in Russ.). https://www.elibrary.ru/item.asp?id=17704758
47. Kuhn H.G., Dickinson-Anson H., Gage F.H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 1996; 16 (6): 2027–2033. DOI: 10.1523/JNEUROSCI.16-06-02027.1996.
48. Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 2001; 21: 6706–6717. DOI: 10.1523/JNEUROSCI.21-17-06706.2001.
49. Gascon E., Vutskits L., Zhang H. Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zone-derived neuronal progenitors in vitro. Eur. J. Neurosci. 2005; 21: 69–80. DOI: 10.1111/j.1460-9568.2004.03849.x.
50. Tropepe V., Craig C.G., Morshead C.M., van der Kooy D. Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J. Neurosci. 1997; 17: 7850–7859. DOI: 10.1523/JNEUROSCI.17-20-07850.1997.
51. Brabley C.A., Peineau S., Taghibiglou C. et al. A pivotal role of GSK-3 in synaptic plasticity. Frontiers in Molecular Neuroscience. 2012; 5: 16–26. DOI: 10.3389/fnmol.2012.00013.
52. Kim T.Y., Hur E.M., Snider W.D., Zhou F.Q. Role of GSK3 signaling in neuronal morphogenesis. Frontiers in Molecular Neuroscience. 2011; 4: 31–39. DOI: 10.3389/fnmol.2011.00048.
53. Cameron H.A., McEwen B.S., Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J. Neurosci. 1995; 15 (6): 4687–4692. DOI: 10.1523/JNEUROSCI.15-06-04687.1995.
54. Brezun J.M., Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. J. Neurosci. 1999; 89 (4): 999–1002. DOI: 10.1016/s0306-4522(98)00693-9.
55. Kulkarni V.A., Jha S., Vaidya V.A. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur. J. Neurosci. 2002; 16 (10): 2008–2012. DOI: 10.1046/j.1460-9568.2002.02268.x.
56. Hoglinger G.U., Rizk P., Muriel M.P. Dopamine depletion impairs precursor cell proliferation in Parkinsons disease. Nat. Neurosci. 2004; 7 (7): 726–735. DOI: 10.1038/nn1265.
57. Cameron H.A. Gould E Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neurosci. 1994; 61 (1-2): 203–209. DOI: 10.1016/0306-4522(94)90224-0.
58. Tanapat P., Hastings N.B., Reeves A.J. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J. Neurosci. 1999; 19 (14): 5792–5801. DOI: 10.1523/JNEUROSCI.19-14-05792.1999.
59. Bergami M., Massserdotti G. A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron. 2015; 85 (4): 710–717. DOI: 10.1016/j.neuron.2015.01.001.
60. Cassilhas R.C., Tufik S., Túlio de Mello M. Physical exercise, neuroplasticity, spatial learning and memory. Cell. Mol. Life Sci. 2016; 73 (5): 975–983. DOI: 10.1007/s00018-015-2102-0.
61. Gould E., Beylin A., Tanapat P. Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci. 1999; 2 (3): 260–265. DOI: 10.1038/6365.
62. Clelland C.D., Choi M., Romberg C. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Sci. 2009; 325: 210–213. DOI: 10.1126/science.1173215.
63. Kitamura T., Inokuchi K. Role of adult neurogenesis in hippocampal-cortical memory consolidation. Mol. Brain. 2014; 7: 13. DOI: 10.1186/1756-6606-7-13.
64. Wang W., Lu S., Li T. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function. J. Neurosci. 2015; 35 (20): 7833–7849. DOI: 10.1523/JNEUROSCI.3745-14.2015.
65. Meng F.T., Zhao J., Ni R.J. Beneficial effects of enriched environment on behaviors were correlated with decreased estrogen and increased BDNF in the hippocampus of male mice. Neuro. Endocrinol. Lett. 2015; 36 (5): 490–497. https://pubmed.ncbi.nlm.nih.gov/26707050/
66. Kempermann G., Kuhn H.G., Gage F.H. Experienceinduced neurogenesis in the senescent dentate gyrus. J. Neurosci. 1998; 18: 3206–3212. DOI: 10.1523/JNEUROSCI.18-09-03206.1998.
67. Wu M.V., Shamy J.L., Bedi G. Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus. Neuropsychopharm. 2014; 39 (8): 1861–1871. DOI: 10.1038/npp.2014.33.
68. Fiore M., Amendola T., Triaca V. Agonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: possible implication for brain progenitor cells activation. Eur. J. Neurosci. 2003; 17 (7): 1455–1464. DOI: 10.1046/j.1460-9568.2003.02573.x.
69. Watanabe N., Yamamoto M. Neural mechanisms of social dominance. Front Neurosci. 2015; 9: 154. DOI: 10.3389/fnins.2015.00154.
70. Bakermans-Kranenburg M.J., van Ijzendoorn M.H., Pijlman F.T. Experimental evidence for differential susceptibility: dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers externalizing behavior in a randomized controlled trial. Dev. Psychol. 2008; 44 (1): 293–300. DOI: 10.1037/0012-1649.44.1.293.
71. Zaletel I., Filipović D., Puškaš N. Hippocampal BDNF in physiological conditions and social isolation. Rev. Neurosci. 2017; 28 (6): 675–692. DOI: 10.1515/revneuro-2016-0072.
72. Biggio F., Mostallino M.C., Talani G. Social enrichment reverses the isolation-induced deficits of neuronal plasticity in the hippocampus of male rats. Neuropharm. 2019; 151: 45–54. DOI: 10.1016/j.neuropharm.2019.03.030.
73. Smagin D.A., Park J.H., Michurina T.V. Altered hippocampal neurogenesis and amygdalar neuronal activity in adult mice with repeated experience of aggression. Front. Neurosci. 2015; 9: 443. DOI: 10.3389/fnins.2015.00443.
74. Chancellor L.V., Roth T.C., LaDage L.D., Pravosudov V.V. The effect of environmental harshness on neurogenesis: a large-scale comparison. Dev. Neurobiol. 2011; 71 (3): 246–252. DOI: 10.1002/dneu.20847.
75. Mortimer J.A., Snowdon D.A., Markesbery W. Head circumference, education and risk of dementia: findings from the nun study. J Clin. Exp. Neuropsychol. 2003; 25: 671–679. DOI: 10.1076/jcen.25.5.671.14584.
76. Piras F., Cherubini A., Caltagirone C., Spalletta G. Education mediates microstructural changes in bilateral hippocampus. Hum. Brain Mapp. 2011; 32 (2): 282–289. DOI: 10.1002/hbm.21018.
77. Lotze M., Domin M., Schmidt C.O. et al. Income is associated with hippocampal/amygdala and education with cingulate cortex grey matter volume. Sci. Rep. 2020; 10 (1): № art. 18786. DOI: 10.1038/s41598-020-75809-9.
78. Alexander G., Furey M., Grady C. et al. Association of premorbid intellectual function with cerebral metabolism in Alzheimers disease: Implications for the cognitive reserve hypothesis. Am J Psychiatry. 1997; 154: 165–172. DOI: 10.1176/ajp.154.2.165.
79. Pavlov K.I., Mukhin V.N., Klimenko V.M., Anisimov V.N. Telomere-telomerase system in aging, norm and pathology. Adv. Gerontol. 2017; 30 (1): 17–26. https://pubmed.ncbi.nlm.nih.gov/ 28557385/
80. Maguire E.A., Woollett K., Spiers H.J. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus. 2006; 16 (12): 1091–1101. DOI: 10.1002/hipo.20233.
81. Malenka R.C., Nicoll R.A. Long-term potentiation – a decade of progress? Sci. 1999; 285: 1870–1874. DOI: 10.1126/science.285.5435.1870.
82. Dolgacheva L.P., Tuleukhanov S.T., Zinchenko V.P. Participation of Ca2+-permeable AMPA- receptors in synaptic plasticity. Biologicheskie membrany = Biol. membranes. 2020; 37 (3): 175–187. (in Russ.). https://www.elibrary.ru/item.asp?id=39266908
83. Tsvetkov E.A., Suderevskaya E.I., Veselkin N.P. The role of long-term potentiation in the mechanism of conditioned reflex learning. Zhurnal evolyutsionnoi biokhimii i fiziologii = J. Evolution. biochem. and fiziol. 2011; 47 (3): 185–192. (in Russ.). https://www.elibrary.ru/item.asp?id=16398049
84. Shnitko S.N., Strinkevich A.L. Mechanisms of Nervous Memory. Message 3. Mechanisms of long-term memory. Voennaya meditsina = Military medicine. 2008; 2 (7): 83–86. (in Russ.). https://www.elibrary.ru/item.asp?id=21226874
85. Kudryashova I.V. Analysis of the conditions necessary for the beginning the consolidation process in the model of long-term synaptic potentiation. Neirokhimiya = Neurochem. 2013; 30 (3): 207–215. (in Russ.). https://www.elibrary.ru/item.asp?id=19569600
86. Leslie J.H., Nedivi E. Activity-regulated genes as mediators of neural circuit plasticity. Prog. Neurobiol. 2011; 94 (3): 223–237. DOI: 10.1016/j.pneurobio.2011.05.002.
87. Mayer M.L., Westbrook G.L., Guthrie P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984; 309: 261–263. DOI: 10.1038/309261a0.
88. Khodosevich K., Jacobi E., Farrow P. et al. Coexpressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function. Neuron. 2014; 83: 601–615. DOI: 10.1016/j.neuron.2014.07.004.
89. McGee T.P., Bats C., Farrant M., Cull-Candy S.G. Auxiliary subunit GSG1L acts to suppress calcium-permeable AMPA receptor function. J. Neurosci. 2015; 35 (49): 16171–16179. DOI: 10.1523/JNEUROSCI.2152-15.2015.
90. Engelhardt J. AMPA Receptor Auxiliary Proteins of the CKAMP Family. Int. J. Mol. Sci. 2019; 20 (6): 1460. DOI: 10.3390/ijms20061460.
91. Henley J.M., Wilkinson K.A. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin. Neurosci. 2013; 15 (1): 11–27. DOI: 10.31887/DCNS.2013.15.1/jhenley.
92. Henley J.M., Wilkinson K.A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 2016; 17: 337–350. DOI: 10.1038/nrn.2016.37.
93. Cheng G.R.., Li X.Y., Xiang Y.D., Liu D., McClintock S.M., Zeng Y. The implication of AMPA receptor in synaptic plasticity impairment and intellectual disability in fragile X syndrome. Physiol. Res. 2017; 66 (5): 715–727. DOI: 10.33549/physiolres.933473.
94. Alberini C.M., Kandel E.R. The regulation of transcription in memory consolidation. Cold Spring Harb. Perspect. Biol. 2014; 7 (1): 345–364. DOI: 10.1101/cshperspect.a021741.

References on translit

-
Published
2021-10-01
How to Cite
Pavlov, K., & Mukhin, V. (2021). PHYSIOLOGICAL MECHANISMS OF NEUROPLASTICITY AS A BASIS OF MENTAL PROCESSES AND SOCIO-PROFESSIONAL ADAPTATION (PART 1). Psychology. Psychophysiology, 14(3), 119-136. https://doi.org/10.14529/jpps210312
Section
Psychophysiology